Commit 8b8dbd87 authored by duanledexianxianxian's avatar duanledexianxianxian 😁

sync code

parent 1d7ea378
......@@ -107,3 +107,4 @@ buildNumber.properties
.mvn/wrapper/maven-wrapper.jar
/.idea/
/src/main/resources/UserBehavior.csv
......@@ -67,6 +67,7 @@
<orderEntry type="library" name="Maven: com.google.errorprone:error_prone_annotations:2.0.18" level="project" />
<orderEntry type="library" name="Maven: com.google.j2objc:j2objc-annotations:1.1" level="project" />
<orderEntry type="library" name="Maven: org.codehaus.mojo:animal-sniffer-annotations:1.14" level="project" />
<orderEntry type="library" name="Maven: org.apache.flink:flink-table-planner-blink_2.11:1.0-SNAPSHOT" level="project" />
<orderEntry type="library" scope="RUNTIME" name="Maven: org.slf4j:slf4j-log4j12:1.7.7" level="project" />
<orderEntry type="library" scope="RUNTIME" name="Maven: log4j:log4j:1.2.17" level="project" />
<orderEntry type="library" name="Maven: org.apache.flink:flink-connector-kafka_2.11:1.9.0" level="project" />
......
......@@ -85,6 +85,14 @@ under the License.
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner-blink_2.12</artifactId>
<version>1.9.1</version>
</dependency>
<!-- Add connector dependencies here. They must be in the default scope (compile). -->
<!-- Example:
......
package com.duanledexianxianxian.maven.flink;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.state.ListState;
import org.apache.flink.api.common.state.ListStateDescriptor;
import org.apache.flink.api.java.io.PojoCsvInputFormat;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple1;
import org.apache.flink.api.java.typeutils.PojoTypeInfo;
import org.apache.flink.api.java.typeutils.TypeExtractor;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.timestamps.AscendingTimestampExtractor;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import java.io.File;
import java.net.URISyntaxException;
import java.net.URL;
import java.sql.Timestamp;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;
/**
* 热门商品推荐
......@@ -17,7 +37,7 @@ import java.net.URL;
* 根据淘宝提供的用户行为数据,分析每天topn热点商品
*/
public class HotItems {
public static void main(String[] args) throws URISyntaxException {
public static void main(String[] args) throws Exception {
// 创建 execution environment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 告诉系统按照 EventTime 处理时间
......@@ -28,6 +48,186 @@ public class HotItems {
// UserBehavior.csv 的本地文件路径, 在 resources 目录下
URL fileUrl = HotItems.class.getClassLoader().getResource("UserBehavior.csv");
// 抽取 UserBehavior 的 TypeInformation,是一个 PojoTypeInfo
Path filePath = Path.fromLocalFile(new File(fileUrl.toURI()));
PojoTypeInfo<UserBehavior> pojoType = (PojoTypeInfo<UserBehavior>) TypeExtractor.createTypeInfo(UserBehavior.class);
// 由于 Java 反射抽取出的字段顺序是不确定的,需要显式指定下文件中字段的顺序
String[] fieldOrder = new String[]{"userId", "itemId", "categoryId", "behavior", "timestamp"};
// 创建 PojoCsvInputFormat
PojoCsvInputFormat<UserBehavior> csvInput = new PojoCsvInputFormat<>(filePath, pojoType, fieldOrder);
env
// 创建数据源,得到 UserBehavior 类型的 DataStream
.createInput(csvInput, pojoType)
// 抽取出时间和生成 watermark
.assignTimestampsAndWatermarks(new AscendingTimestampExtractor<UserBehavior>() {
@Override
public long extractAscendingTimestamp(UserBehavior userBehavior) {
// 原始数据单位秒,将其转成毫秒
return userBehavior.timestamp * 1000;
}
})
// 过滤出只有点击的数据
.filter(new FilterFunction<UserBehavior>() {
@Override
public boolean filter(UserBehavior userBehavior) throws Exception {
// 过滤出只有点击的数据
return userBehavior.behavior.equals("pv");
}
})
.keyBy("itemId")
.timeWindow(Time.minutes(60), Time.minutes(5))
.aggregate(new CountAgg(), new WindowResultFunction())
.keyBy("windowEnd")
.process(new TopNHotItems(3))
.print();
env.execute("Hot Items Job");
}
/**
* 求某个窗口中前 N 名的热门点击商品,key 为窗口时间戳,输出为 TopN 的结果字符串
*/
public static class TopNHotItems extends KeyedProcessFunction<Tuple, ItemViewCount, String> {
private final int topSize;
public TopNHotItems(int topSize) {
this.topSize = topSize;
}
// 用于存储商品与点击数的状态,待收齐同一个窗口的数据后,再触发 TopN 计算
private ListState<ItemViewCount> itemState;
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
ListStateDescriptor<ItemViewCount> itemsStateDesc = new ListStateDescriptor<>(
"itemState-state",
ItemViewCount.class);
itemState = getRuntimeContext().getListState(itemsStateDesc);
}
@Override
public void processElement(
ItemViewCount input,
Context context,
Collector<String> collector) throws Exception {
// 每条数据都保存到状态中
itemState.add(input);
// 注册 windowEnd+1 的 EventTime Timer, 当触发时,说明收齐了属于windowEnd窗口的所有商品数据
context.timerService().registerEventTimeTimer(input.windowEnd + 1);
}
@Override
public void onTimer(
long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
// 获取收到的所有商品点击量
List<ItemViewCount> allItems = new ArrayList<>();
for (ItemViewCount item : itemState.get()) {
allItems.add(item);
}
// 提前清除状态中的数据,释放空间
itemState.clear();
// 按照点击量从大到小排序
allItems.sort(new Comparator<ItemViewCount>() {
@Override
public int compare(ItemViewCount o1, ItemViewCount o2) {
return (int) (o2.viewCount - o1.viewCount);
}
});
// 将排名信息格式化成 String, 便于打印
StringBuilder result = new StringBuilder();
result.append("====================================\n");
result.append("时间: ").append(new Timestamp(timestamp - 1)).append("\n");
for (int i = 0; i < allItems.size() && i < topSize; i++) {
ItemViewCount currentItem = allItems.get(i);
// No1: 商品ID=12224 浏览量=2413
result.append("No").append(i).append(":")
.append(" 商品ID=").append(currentItem.itemId)
.append(" 浏览量=").append(currentItem.viewCount)
.append("\n");
}
result.append("====================================\n\n");
// 控制输出频率,模拟实时滚动结果
Thread.sleep(1000);
out.collect(result.toString());
}
}
/**
* 用于输出窗口的结果
*/
public static class WindowResultFunction implements WindowFunction<Long, ItemViewCount, Tuple, TimeWindow> {
@Override
public void apply(
Tuple key, // 窗口的主键,即 itemId
TimeWindow window, // 窗口
Iterable<Long> aggregateResult, // 聚合函数的结果,即 count 值
Collector<ItemViewCount> collector // 输出类型为 ItemViewCount
) throws Exception {
Long itemId = ((Tuple1<Long>) key).f0;
Long count = aggregateResult.iterator().next();
collector.collect(ItemViewCount.of(itemId, window.getEnd(), count));
}
}
/**
* COUNT 统计的聚合函数实现,每出现一条记录加一
*/
public static class CountAgg implements AggregateFunction<UserBehavior, Long, Long> {
@Override
public Long createAccumulator() {
return 0L;
}
@Override
public Long add(UserBehavior userBehavior, Long acc) {
return acc + 1;
}
@Override
public Long getResult(Long acc) {
return acc;
}
@Override
public Long merge(Long acc1, Long acc2) {
return acc1 + acc2;
}
}
/**
* 商品点击量(窗口操作的输出类型)
*/
public static class ItemViewCount {
public long itemId; // 商品ID
public long windowEnd; // 窗口结束时间戳
public long viewCount; // 商品的点击量
public static ItemViewCount of(long itemId, long windowEnd, long viewCount) {
ItemViewCount result = new ItemViewCount();
result.itemId = itemId;
result.windowEnd = windowEnd;
result.viewCount = viewCount;
return result;
}
}
/**
* 用户行为数据结构
**/
public static class UserBehavior {
public long userId; // 用户ID
public long itemId; // 商品ID
public int categoryId; // 商品类目ID
public String behavior; // 用户行为, 包括("pv", "buy", "cart", "fav")
public long timestamp; // 行为发生的时间戳,单位秒
}
}
package com.duanledexianxianxian.maven.flink.sql.sql;
import com.google.common.collect.Lists;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import org.apache.flink.types.StringValue;
import java.util.List;
public class Main1 {
public static void main(String[] args) throws Exception {
// Streaming 环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
EnvironmentSettings settings = EnvironmentSettings.newInstance()
.useBlinkPlanner()
.inStreamingMode()
.build();
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env,settings);
// 设置EventTime
// env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
//方便我们查出输出数据
env.setParallelism(1);
List<PageAccess> pageAccessList = Lists.newArrayList();
initData(pageAccessList);
DataStream<PageAccess> stream = env.fromCollection(pageAccessList);
// Table pageAccess = tableEnv.fromDataStream(stream, "region,userId,accessTime");
tableEnv.registerDataStream("pageAccess", stream, "region,userId,accessTime");
Table result = tableEnv.sqlQuery("select * from pageAccess where region='BeiJing' order by userId desc");
DataStream<Row> rowDataStream = tableEnv.toAppendStream(result, Row.class);
rowDataStream.print();
env.execute("Flink sql");
}
public static void initData(List<PageAccess> pageAccessList) {
for (Object[] initDatum : INIT_DATA) {
PageAccess pageAccess = new PageAccess(String.valueOf(initDatum[0]), String.valueOf(initDatum[1]), Long.valueOf(String.valueOf(initDatum[2])));
pageAccessList.add(pageAccess);
}
}
@Data
@AllArgsConstructor
@NoArgsConstructor
public static class PageAccess {
// 区域
private String region;
// 用户名称
private String userId;
// 访问时间
private Long accessTime;
}
private static final Object[][] INIT_DATA = {
{"ShangHai", "U0010", 1510365660000L},
{"BeiJing", "U1001", 1510365660000L},
{"BeiJing", "U2032", 1510366200000L},
{"BeiJing", "U1100", 1510366260000L},
{"ShangHai", "U0011", 1510373400000L},
};
}
package com.duanledexianxianxian.maven.flink.sql.sql;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import java.util.Arrays;
/**
* @author Administrator
*/
public class Main2 {
public static void main(String[] args) throws Exception {
// set up execution environment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
DataStream<Order> orderA = env.fromCollection(Arrays.asList(
new Order(1L, "beer", 3),
new Order(1L, "diaper", 4),
new Order(3L, "rubber", 2)));
DataStream<Order> orderB = env.fromCollection(Arrays.asList(
new Order(2L, "pen", 3),
new Order(2L, "rubber", 3),
new Order(4L, "beer", 1)));
// convert DataStream to Table
Table tableA = tableEnv.fromDataStream(orderA, "user, product, amount");
DataStream<Row> rowDataStream = tableEnv.toAppendStream(tableA, Row.class);
rowDataStream.print();
env.execute("Flink sql");
}
/**
* Simple POJO.
*/
public static class Order {
public Long user;
public String product;
public int amount;
public Order() {
}
public Order(Long user, String product, int amount) {
this.user = user;
this.product = product;
this.amount = amount;
}
@Override
public String toString() {
return "Order{" +
"user=" + user +
", product='" + product + '\'' +
", amount=" + amount +
'}';
}
}
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment